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CHARACTERISTICS FOR GENERALIZED 
HERMOMECHANICAL FIELDS IN VISCOUS 
FLUID MEDIA 

S. M. Bosyakov UDC 532.135:539.374 

In the context of a general theol, of character&tics, thermomechanical processes are considered in 
.fluid media with the final heat-propagation velocity. The equations of propagation of characteristics for 
two variants of the theory of a viscous fluid medium are derived, and ways of applying them for deter- 
mining displacement velocities are indicated. 

The theory of nonstationary viscous-fluid flows has been studied rather adequately in the classical case 
assuming the symmetry of stress tensors [1]. Therefore, of interest is investigating the regularities of  wave 
surfaces in a more general asymmetric case with account for the final heat-propagation velocity. In the present 
paper, we consider one particular case of this great problem associated with a study of  the regularities of  the 
existence of the characteristic surfaces for disconnected thermomechanical fields. Interest in this problem is 
motivated by the fact that the characteristics represent the surfaces of the propagation of discontinuities of  the 
velocity and temperature fields. 

In the case where the dissipation of energy can be neglected, the thermomechanical fields in viscous 
fluid media are described by a nonlinear system of hyperbolic equations composed of the heat-conduction 
equation and equations of  motion, continuity, and state [1-3]: 

dO 
0(tA0 = "-~ + Xrl dt ' 

d~ 
~tAv-->~ - (~, + ~t) grad div v --~- grad p = p -d-7' 

do + div pv-->= 0 ,  

p - - f ( p ,  T). 

In view of the complexity of this system, we will consider a simplified variant of it, assuming that the fluid is 
incompressible (p = const) and motions occur at small velocities: 

cqA0 - 30 3"0 = 0 ~tAv --->- grad p = p -~-t' div v ---~= 0 .  
~t "l;rl ~t  ' 

(l) 

Here 3, and ~t are, respectively, the volume and shear viscosities, v--->= (vi, v2, V3) a re  the components of  the 
velocity vector, p is the pressure, cq is the thermal conductivity coefficient, Xrl is the relaxation time of  the 
heat flux, and 0 is the temperature increment. 

We add the following initial conditions to Eq. (1): 
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= ~ (0, x ) .  vilt-_o=f.(O,x), p[~=o=go(O,x), Ol~=~(O,x) ,  ~ =o 
(2) 

If the initial conditions are analytic functions and the plane t = 0 is not characteristic, problem (1)-(2) 
has a unique solution. Therefore, the incorrectness of a Cauchy problem, in particular, its unsolvability [4-6], 
will be a criterion for finding the characteristic surfaces. 

We use this fact as applied to system (1); for this, we go over in Eq. (1) to new variables following 

(t=Xo, Xl, X 2, X3] 
the scheme from [4]: /Z ' Zb Z2, Z3 )" In this case 

,3 (,) a~_) az 3 0 (*) bz~ 

i=1 (3) 

02(*) 02 (*) ag aZ 0(*) 02Z 3 02 - + - - - - + Z  (,) az, ag+  3 
OXkOY I 0 ~  OX k bX 1 Og OXkOX I bgt.~aj, bx k bx I E 0 (*) 02Zi 

ij=l i=l Oil OXkOXl 

By virtue of Eq. (3), Eq. (1) takes the form (we write the higher-order terms in the system trans- 
formed): 

a~ ~(o~)  ~aT(a , )  ÷ .... o,, 

01ji 3 b2Z 0p 0Z 0k' i 0Z 3 01, k 0Z 

" 7 / =  < az o~, Z 7, ,-_, 
- - - - + . . . = 0 .  

(4) 

The unsolvability condition of the Cauchy problem for system (4) is equivalent to the zero equality of 

0Pi 020 0p 
the determinant [5, 6] that is composed of the coefficients at the derivatives -~--~, ~-~, and ~--~. This leads to 

the following equation of the characteristics: 

g2 Xrl (az~ 

0 

0 0 0 0 

A 0 0 

0 0 A 0 

0 0 A 

aZ aZ bZ 

~1 0X2 ~3 

-- ~X 1' 
az 
axe 
aZ 

OX 3 

= 0 .  (5) 

Here we have introduced the notation 
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3 ") 

g2= Z aZ  " A=I.tAZ_p..~_t " 

k=l 

Expanding this determinant, we have 

g2A2 [g2 _ "~rl (~Z ~ 

Hence the following equations for determining the propagation velocities of  the characteristics are obtained: 

A = 0 ,  (7) 

,) 

"l;rl /o-#Z / - . - - g { a )  :o. (8) 

l dZ  
Taking into account that the displacement velocity of  the surface of discontinuity [5, 6] is P - 

g d t "  

from Eq. (8) we have P = " f~ t / x f l .  Moreover, f rom Eq. (6) it follows that g2 = 0 is one of the solutions that 

corresponds to the stationary characteristic surface (the existence of these surfaces is proved experimentally [7]). 
Now we consider the generalization of this theory to the case of a semimoment viscous fluid medium 

in which the rotation of a local trihedron is equal to the mean rotation of the displacement field: 

-+ 1 _+m--+= 
co = ~ rot v , (cot, co2, 0)3) '  v--')= (Vl' V2' V3)" 

The equations of motion can be written in this form [8-10]: 

3 dv i 
Y~ ~:,j + x , =  p - d , 
)=-i 

3 3 
]~ .j;j + ~ % oj~ + r, =: do,, 

dt " 
j=l j,k=l 

(9) 

The tensors of force and moment stresses have symmetric and nonsymmetric parts and are determined 
by the formulas [8-10] 3 /3 / 

Gij = la (3y j  + Ojvi) + ot (ajv i - aivj) - 2or ~_~ eijkm k + ~, ~_~ akv , - p 8ij ,  
k=-I I,=1 

~t;: = v ( a m / +  a;co) + ~ (a:oi - a,~;).  

1 
The nonsymmetric part of  the tensor of  force stresses ~ciD = "~(~ij + ~Yji) can be found from the second 

equation of system (9): 

1 1 3 1 3 ( dcoi ~ 
"<,m> = 5 (",m -- "m, ) = -- 5 Z ~"m"~'~-5 Z ~/,m r ; - j - - g - j .  

id=l,3 i--I 
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Then 
3 

1 
= ot  ( 3 i v  i - 3 i v j )  - 2 o r  . 

k=-I 

The substitution of the components of the tensors of force and moment stresses into the first equation 
of system (3) gives 

ItAv--% (K + It) grad div v -+-  gradp + 1 (y + ~) rot rot Av--)+ 

l ( 3  .d~'~ ~ d ~  
+ ~-rot [Y -j--~- J+x = p ~ .  

1 
With allowance for the fact that o) = ~ro t  v-'~, we have 

1 
ItAv--% (~, + It) grad div v ---~- grad p + ~- (T + I~) rot rot Av--~+ 

l .---Y..--P. d F 4 L  
+~-rot r +,~ = p - ~ - +  4 

To this equation we add that of continuity: 

, ,0,  

-t + p div v-'~= 0 .  (11) 

In order to describe the dynamic temperature stresses in viscous fluids, we use a generalized hyperbolic 
heat-conduction equation for an isotropic viscous medium [2]: 

d0 d20 (12) 
~t A'0 = - -  -- Zr2 o • 

d t  d r -  

In this form, the system of equations (10)-(12) is a resolving system of equations for the variant considered of 
the asymmetric theory of a viscous thermomechanical medium. For its simplicity we assume that the motions 
occur at small velocities and the fluid is incompressible (9 = const). Then we will have 

, 3 " ~ 1 
ItAv-+-l(T+ [~)A-v-')+~t ( 4 £ A - p ) v - g r a d p = - ~ - r o t  Y-~-X -), 

div v-°= 0 ,  

30  320 
15tA0 . . . . .  0 

3 t  "¢r2 3 ?  " 

03) 

The initial data for this problem have just the same form as for system (1). 
The equation of the characteristic surface can be found from the condition that from system (13), writ- 

3vi 3 p  and 020 
ten in the new variables Z, Z j, Z2, and Z3, it is impossible to determine 3Z' 3Z' 3Z ---~-" 

It should be noted that if vi [t--o = ft.(0, X), then we also have A v  i ]t--~ = Aj~(0, X ) ,  and this means that 

(v - '~ -  J A v  --~) is the sought function for which the Cauchy problem can be considered. 
4 
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From the aforesaid the equation for the characteristic surfaces follows in such a form: 

3Z 
B 0 0 

3Xl 
bZ 

0 B 0 --~x~ 

3z 
0 0 B 

bx3 

0 0 0 

bZ 3Z  3Z 

~X 1 OX 2 ~X 3 

0 

2 " J r2 0 Z"  

0 

= 0 ,  

where 

1 ~ j _ b  O 
B = ~ t Z - - ~  (y + ~) A ' Z  + 4 -~t & Z -  p -~t Z . 

Resolving the determinant, we will have 

whence the following equations for the propagation of the characteristics are obtained: 

j_ 3 3Z l (~+ 6) a 2z+ = 0 (14) 
. z ~ Z -  ~ 4 ~tt A Z -  p -~-t , 

(15) 

2 g = 0 .  (16) 

Equation (14) with j = 0 and y +  [~ = 0 gives the characteristic equation for the classical theory of 
viscous fluids. We should also note the fact that the characteristic equations for both the classical and semimo- 
ment theories of viscous deformable fluid media determine the wave surfaces of quasi-elastic and quasithermal 
nonstationary discontinuities [11]. Moreover, even in the general case where the fluid is compressible and the 
effect of  connectedness between the v---~and 0 fields is present no surface of discontinuity of a thermoelastic 
nature occurs. All the aforesaid can be extended to the more general case of the asymmetric mechanics of  a 
viscous medium for both small and final velocities of  wave motions. 

Formulas (7) and (14) allow us to write dispersion relations for the classical and semimoment hydro- 
dynamics. For this, we seek solutions of  these equations of the plane-wave type v = v0 exp ( - i ( o ) t - k - - ~ ) ,  

which leads to the following equations: 

~tk 2 - ipo) = O, 

g k2 + O[ + 6) k4/4  = io3k2 + i~op . 
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These equations have an explicit character, which makes it possible to solve them numerically on a 
personal computer. 

N O T A T I O N  

cz, 3,, bt, 13, and ~, material constants of the liquid medium; p, pressure; Xi and Yi, internal forces and 
distributed moments; j, moment of  inertia; eijk, Levi-Civita symbol; ~ij, Kronecker symbol; v--~, linear velocity; ~,, 
velocity of rotational motion; 0, increment in the temperature compared to the temperature of the natural state 
To; p, medium density; Xrl.r2_, relaxation time of the heat flux; cq and 13t, thermal conductivity coefficients; i, 
imaginary unit; ~ ,  wave vector; co, cyclic frequency. Subscripts: t, heat; r, relaxation. 
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